Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 545
Filtrar
1.
J Cell Biochem ; 125(3): e30533, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38345373

RESUMO

Dihydrofolate reductase (DHFR) is a ubiquitous enzyme that regulates the biosynthesis of tetrahydrofolate among various species of Plasmodium parasite. It is a validated target of the antifolate drug pyrimethamine (Pyr) in Plasmodium falciparum (Pf), but its clinical efficacy has been hampered due to the emergence of drug resistance. This has made the attempt to screen Food & Drug Administration-approved drugs against wild- and mutant PfDHFR by employing an in-silico pipeline to identify potent candidates. The current study has followed a virtual screening approach for identifying potential DHFR inhibitors from DrugBank database, based on a structure similarity search of candidates, followed by absorption, distribution, metabolism, and excretion estimation. The screened drugs were subjected to various parameters like docking, molecular mechanics with generalized born and surface area solvation calculations, and molecular simulations. We have thus identified two potential drug candidates, duloxetine and guanethidine, which can be repurposed to be tested for their efficacy against wild type and drug resistant falciparum malaria.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/química , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Preparações Farmacêuticas , Reposicionamento de Medicamentos , Malária/tratamento farmacológico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Resistência a Medicamentos , Ácido Fólico
2.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37875111

RESUMO

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carbono , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Metotrexato/farmacologia , Metotrexato/metabolismo , Metotrexato/uso terapêutico , Neoplasias/tratamento farmacológico , Quimera de Direcionamento de Proteólise , Tetra-Hidrofolato Desidrogenase/metabolismo
3.
Eur J Med Chem ; 264: 115971, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38071795

RESUMO

Pharmacological inhibition of dihydrofolate reductase (DHFR) is an established approach for treating a variety of human diseases, including foreign infections and cancer. However, treatment with classic DHFR inhibitors, such as methotrexate (MTX), are associated with negative side-effects and resistance mechanisms that have prompted the search for alternatives. The DHFR inhibitor pyrimethamine (Pyr) has compelling anti-cancer activity in in vivo models, but lacks potency compared to MTX, thereby requiring higher concentrations to induce therapeutic responses. The purpose of this work was to investigate structural analogues of Pyr to improve its in vitro and cellular activity. A series of 36 Pyr analogues were synthesized and tested in a sequence of in vitro and cell-based assays to monitor their DHFR inhibitory activity, cellular target engagement, and impact on breast cancer cell viability. Ten top compounds were identified, two of which stood out as potential lead candidates, 32 and 34. These functionalized Pyr analogues potently engaged DHFR in cells, at concentrations as low as 1 nM and represent promising DHFR inhibitors that could be further explored as potential anti-cancer agents.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Neoplasias , Humanos , Pirimetamina/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Metotrexato/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Biologia , Tetra-Hidrofolato Desidrogenase/química
4.
Eur J Med Chem ; 262: 115914, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37925763

RESUMO

Since the overexpression of folate receptors (FRs) in certain types of cancers, a variety of FR-targeted fluorescent probes for tumor detection have been developed. However, the reported probes almost all have the same targeting ligand of folic acid with various fluorophores and/or linkers. In the present study, a series of novel tumor-targeted near-infrared (NIR) molecular fluorescent probes were designed and synthesized based on previously reported 6-substituted pyrrolo[2,3-d]pyrimidine antifolates. All newly synthesized probes showed specific FR binding in vitro, whereas GT-NIR-4 and GT-NIR-5 with a benzene and a thiophene ring, respectively, on the side chain of pyrrolo[2,3-d]pyrimidine exhibited better FR binding affinity than that of GT-NIR-6 with folic acid as targeting ligand. GT-NIR-4 also showed high tumor uptake in KB tumor-bearing mice with good pharmacokinetic properties and biological safety. This work demonstrates the first attempt to replace folic acid with antifolates as targeting ligands for tumor-targeted NIR probes.


Assuntos
Antagonistas do Ácido Fólico , Neoplasias , Animais , Camundongos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Ligantes , Corantes Fluorescentes , Receptor 1 de Folato/metabolismo , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/química , Ácido Fólico , Linhagem Celular Tumoral
5.
J Med Chem ; 66(16): 11294-11323, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37582241

RESUMO

Multitargeted agents provide tumor selectivity with reduced drug resistance and dose-limiting toxicities. We previously described the multitargeted 6-substituted pyrrolo[3,2-d]pyrimidine antifolate 1 with activity against early- and late-stage pancreatic tumors with limited tumor selectivity. Structure-based design with our human serine hydroxymethyl transferase (SHMT) 2 and glycinamide ribonucleotide formyltransferase (GARFTase) structures, and published X-ray crystal structures of 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/inosine monophosphate cyclohydrolase (ATIC), SHMT1, and folate receptor (FR) α and ß afforded 11 analogues. Multitargeted inhibition and selective tumor transport were designed by providing promiscuous conformational flexibility in the molecules. Metabolite rescue identified mitochondrial C1 metabolism along with de novo purine biosynthesis as the targeted pathways. We identified analogues with tumor-selective transport via FRs and increased SHMT2, SHMT1, and GARFTase inhibition (28-, 21-, and 11-fold, respectively) compared to 1. These multitargeted agents represent an exciting new structural motif for targeted cancer therapy with substantial advantages of selectivity and potency over clinically used antifolates.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Hidroximetil e Formil Transferases , Neoplasias , Humanos , Antineoplásicos/química , Carbono , Citosol , Antagonistas do Ácido Fólico/química , Hidroximetil e Formil Transferases/metabolismo , Mitocôndrias , Neoplasias/metabolismo
6.
J Chem Inf Model ; 63(15): 4839-4849, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37491825

RESUMO

Dihydrofolate reductase (DHFR) is an important drug target and a highly studied model protein for understanding enzyme dynamics. DHFR's crucial role in folate synthesis renders it an ideal candidate to understand protein function and protein evolution mechanisms. In this study, to understand how a newly proposed DHFR inhibitor, 4'-deoxy methyl trimethoprim (4'-DTMP), alters evolutionary trajectories, we studied interactions that lead to its superior performance over that of trimethoprim (TMP). To elucidate the inhibition mechanism of 4'-DTMP, we first confirmed, both computationally and experimentally, that the relative binding free energy cost for the mutation of TMP and 4'-DTMP is the same, pointing the origin of the characteristic differences to be kinetic rather than thermodynamic. We then employed an interaction-based analysis by focusing first on the active site and then on the whole enzyme. We confirmed that the polar modification in 4'-DTMP induces additional local interactions with the enzyme, particularly, the M20 loop. These changes are propagated to the whole enzyme as shifts in the hydrogen bond networks. To shed light on the allosteric interactions, we support our analysis with network-based community analysis and show that segmentation of the loop domain of inhibitor-bound DHFR must be avoided by a successful inhibitor.


Assuntos
Escherichia coli , Antagonistas do Ácido Fólico , Escherichia coli/metabolismo , Tetra-Hidrofolato Desidrogenase/química , Timidina Monofosfato , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Trimetoprima/farmacologia , Trimetoprima/química , Trimetoprima/metabolismo
7.
JCI Insight ; 8(10)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37097751

RESUMO

Although thymidylate synthase (TYMS) inhibitors have served as components of chemotherapy regimens, the currently available inhibitors induce TYMS overexpression or alter folate transport/metabolism feedback pathways that tumor cells exploit for drug resistance, limiting overall benefit. Here we report a small molecule TYMS inhibitor that i) exhibited enhanced antitumor activity as compared with current fluoropyrimidines and antifolates without inducing TYMS overexpression, ii) is structurally distinct from classical antifolates, iii) extended survival in both pancreatic xenograft tumor models and an hTS/Ink4a/Arf null genetically engineered mouse tumor model, and iv) is well tolerated with equal efficacy using either intraperitoneal or oral administration. Mechanistically, we verify the compound is a multifunctional nonclassical antifolate, and using a series of analogs, we identify structural features allowing direct TYMS inhibition while maintaining the ability to inhibit dihydrofolate reductase. Collectively, this work identifies nonclassical antifolate inhibitors that optimize inhibition of thymidylate biosynthesis with a favorable safety profile, highlighting the potential for enhanced cancer therapy.


Assuntos
Antagonistas do Ácido Fólico , Camundongos , Animais , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/uso terapêutico , Antagonistas do Ácido Fólico/química , Inibidores Enzimáticos/farmacologia , Resistência a Medicamentos , Timidilato Sintase
8.
Drug Dev Res ; 84(5): 888-906, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37052308

RESUMO

Two series of quinazolinone derivatives were designed and synthesized as dihydrofolate reductase (DHFR) inhibitors. All compounds were evaluated for their antibacterial and antitumor activities. Antibacterial activity was evaluated against three strains of Gram-positive and Gram-negative bacteria. Compound 3d exhibited the highest inhibitory activity against Staphylococcus aureus DHFR (SaDHFR) with IC50 of 0.769 ± 0.04 µM compared to 0.255 ± 0.014 µM for trimethoprim. Compound 3e was also more potent than trimethoprim against Escherichia coli DHFR (EcDHFR) with IC50 of 0.158 ± 0.01 µM and 0.226 ± 0.014 µM, respectively. Compound 3e exhibited a promising antiproliferative effect against most of the tested cancer cells. It also showed potent activity against leukemia (CCRF-CEM, and RPMI-8226); lung NCI-H522, and CNS U251 with GI% of 65.2, 63.22, 73.28, and 97.22, respectively. The cytotoxic activity of compound 3e was almost half the activity of doxorubicin against CCRF-CEM cell line with IC50 of 1.569 ± 0.06 µM and 0.822 ± 0.03 µM, respectively. In addition, compound 3e inhibited human DHFR with IC50 value of 0.527 ± 0.028 µM in comparison to methotrexate (IC50 = 0.118 ± 0.006 µM). Compound 3e caused an arrest of the cell cycle mainly at the S phase and caused a rise in the overall apoptotic percentage from 2.03% to 48.51%. (23.89-fold). Treatment of CCRF-CEM cells with compound 3e produced a significant increase in the active caspase-3 level by 6.25-fold compared to untreated cells. Molecular modeling studies were performed to evaluate the binding pattern of the most active compounds in the bacterial and human DHFR.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Antibacterianos/química , Quinazolinonas/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Antineoplásicos/química , Trimetoprima/farmacologia , Relação Estrutura-Atividade , Estrutura Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Simulação de Acoplamento Molecular
9.
J Biomol Struct Dyn ; 41(23): 14497-14509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883866

RESUMO

In all species, dihydrofolate reductase (DHFR) is an essential enzyme that regulates the cellular amount of tetrahydrofolate. Human DHFR (hDHFR) activity inhibition results in tetrahydrofolate depletion and cell death. This property has made hDHFR a therapeutic target for cancer. Methotrexate is a well-known hDHFR inhibitor, but its administration has shown some light to severe adverse effects. Therefore, we aimed to find new potential hDHFR inhibitors using structure-based virtual screening, ADMET prediction, molecular docking, and molecular dynamics simulations. Here, we used the PubChem database to find all compounds with at least 90% structural similarity to known natural DHFR inhibitors. To explore their interaction pattern and estimate their binding affinities, the screened compounds (2023) were subjected to structure-based molecular docking against hDHFR. The fifteen compounds that showed higher binding affinity to the hDHFR than the reference compound (methotrexate) displayed important molecular orientation and interactions with key residues in the enzyme's active site. These compounds were subjected to Lipinski and ADMET prediction. PubChem CIDs: 46886812 and 638190 were identified as putative inhibitors. In addition, molecular dynamics simulations revealed that the binding of compounds (CIDs: 46886812 and 63819) stabilized the hDHFR structure and caused minor conformational changes. Our findings suggest that two compounds (CIDs: 46886812 and 63819) could be promising potential inhibitors of hDHFR in cancer therapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Antagonistas do Ácido Fólico , Neoplasias , Humanos , Metotrexato/farmacologia , Metotrexato/química , Tetra-Hidrofolato Desidrogenase/química , Simulação de Acoplamento Molecular , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Tetra-Hidrofolatos
10.
Molecules ; 28(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770958

RESUMO

Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of DHFR results in the progression of multiple pathological conditions such as cancer, bacterial infection, and inflammation. Therefore, DHFR inhibition plays a major role in treating these illnesses. Sesquiterpenes of various types are prime metabolites derived from the marine sponge Dactylospongia elegans and have demonstrated antitumor, anti-inflammation, and antibacterial capacities. Here, we investigated the in silico potential inhibitory effects of 87 D. elegans metabolites on DHFR and predicted their ADMET properties. Compounds were prepared computationally for molecular docking into the selected crystal structure of DHFR (PDB: 1KMV). The docking scores of metabolites 34, 28, and 44 were the highest among this series (gscore values of -12.431, -11.502, and -10.62 kcal/mol, respectively), even above the co-crystallized inhibitor SRI-9662 score (-10.432 kcal/mol). The binding affinity and protein stability of these top three scored compounds were further estimated using molecular dynamic simulation. Compounds 34, 28, and 44 revealed high binding affinity to the enzyme and could be possible leads for DHFR inhibitors; however, further in vitro and in vivo investigations are required to validate their potential.


Assuntos
Antagonistas do Ácido Fólico , Poríferos , Sesquiterpenos , Animais , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Tetra-Hidrofolato Desidrogenase/química , Antagonistas do Ácido Fólico/química , Poríferos/metabolismo , Sesquiterpenos/farmacologia
11.
J Biomol Struct Dyn ; 41(12): 5728-5743, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35815526

RESUMO

Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) is an important target enzyme in malarial chemotherapy. An understanding of how novel inhibitors interact with wild-type (wtPfDHFR), quadruple-mutant (qmPfDHFR), and human (hDHFR) enzymes is required for the development of these compounds as antimalarials. This study is focused on a series of des-Cl and m-Cl phenyl analogs of pyrimethamine with various flexible 6-substituents. The interactions of these compounds with DHFR enzymes were investigated by 3 D-QSAR, MD simulations, MM-PBSA, and DFT calculations. CoMFA and CoMSIA models were developed with good predictive abilities for wtPfDHFR and qmPfDHFR. For hDHFR, CoMSIA models combined with clogP descriptor were successfully derived. Binding free energy using MM-PBSA and comparison of per residue decomposition energy analyses with the DFT method at M06-2X/6-31G ++(d,p) level of theory indicated that Asp54 and Phe58 play important roles in the binding of the most potent compound in the series (compound 27) with both wtPfDHFR and qmPfDHFR, whereas Arg59 and Arg122 were additionally found to interact with this inhibitor in qmPfDHFR. For hDHFR, the residues Glu30 and Phe34 but not Arg70, equivalent to Asp54, Phe58, and Arg122 in PfDHFR, also play role in compound 27 binding through strong hydrophobic interactions (Phe34) and hydrogen bond network with Glu30, Ile7, and Val115. From the key interactions identified in the DHFR-inhibitor complexes, a general scheme is proposed for designing new inhibitors selective for PfDHFR that is important for the development of novel antifolate antimalarials.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Humanos , Pirimetamina/farmacologia , Pirimetamina/química , Antimaláricos/química , Relação Quantitativa Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Plasmodium falciparum , Antagonistas do Ácido Fólico/química
12.
Arch Pharm (Weinheim) ; 356(1): e2200417, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36257809

RESUMO

New 2-mercapto-quinazolin-4-one analogs were synthesized and tested for their in vitro anticancer activity, dihydrofolate reductase (DHFR) inhibition, and epidermal growth factor tyrosine kinase (EGFR-TK) inhibition activities. Compound 24, which is characterized by a 2-benzyl-thio function, showed broad-spectrum anticancer activity with high safety profile and selectivity index. The concentrations of 24 causing 50% growth inhibition (GI50 ) and total cell growth inhibition (TGI) and its lethal concentration 50 (LC50 ) were 15.1, 52.5, and 91.2 µM, respectively, using 5-fluorouracil as a positive control. Also, it showed EGFR-TK inhibitory activity with IC50 = 13.40 nM compared to gefitinib (IC50 = 18.14 nM) and DHFR inhibitory potency with 0.30 µM compared to methotrexate (MTX; IC50 = 0.08 µM). In addition, compound 24 caused cell cycle arrest and apoptosis on COLO-205 colon cancer cells. Compounds 37, 21, and 54 showed remarkable DHFR inhibitory activity with IC50 values of 0.03, 0.08, and 0.08 µM, respectively. The inhibitory properties of these compounds are due to an electron-withdrawing group on the quinazolinone ring, except for compound 54. In a molecular modeling study, compound 24 showed the same binding mode as gefitinib as it interacted with the amino acid Lys745 via π-π interaction. Compound 37 showed a similar binding mode as MTX through the binding interaction with Lys68, Asn64 via hydrogen bond acceptor, and Phe31 via arene-arene interaction. The obtained model and substitution pattern could be used for further development.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Estrutura Molecular , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Proteínas Tirosina Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Gefitinibe/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Quinazolinonas/farmacologia , Quinazolinonas/química , Receptores ErbB/metabolismo , Linhagem Celular Tumoral
13.
J Biochem Mol Toxicol ; 37(4): e23290, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36541419

RESUMO

In the present work, a library of 120 compounds was prepared using various aliphatic and aromatic amines. Finally, 10 compounds were selected through in silico screening carrying 4-aminobenzoyl-l-glutamic acid and 1,3,5-triazine moiety. The docking results of compounds 4d16 and 4d38 revealed higher binding interaction with amino acids Asp54 (-537.96 kcal/mol) and Asp54, Phe116 (-618.22 kcal/mol) against wild (1J3I) and quadruple mutant (1J3K) type of Pf-DHFR inhibitors and were comparable to standard WR99210. These compounds were developed by facile and microwave-assisted synthesis via nucleophilic substitution reaction and characterized by different spectroscopic methods. In vitro antimalarial assay results also suggested that these two compounds were having higher antimalarial activity against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strain out of the ten synthesized compounds with IC50 13.25 µM and 14.72 µM, respectively. These hybrid scaffolds might be useful in the lead discovery of a new class of Pf-DHFR inhibitors.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/farmacologia , Antimaláricos/química , Ácido Glutâmico , Plasmodium falciparum , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Cloroquina/farmacologia , Triazinas/farmacologia , Triazinas/química , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
14.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430425

RESUMO

Antifolates such as methotrexate (MTX) have been largely known as anticancer agents because of their role in blocking nucleic acid synthesis and cell proliferation. Their mechanism of action lies in their ability to inhibit enzymes involved in the folic acid cycle, especially human dihydrofolate reductase (hDHFR). However, most of them have a classical structure that has proven ineffective against melanoma, and, therefore, inhibitors with a non-classical lipophilic structure are increasingly becoming an attractive alternative to circumvent this clinical resistance. In this study, we conducted a protocol combining virtual screening (VS) and cell-based assays to identify new potential non-classical hDHFR inhibitors. Among 173 hit compounds identified (average logP = 3.68; average MW = 378.34 Da), two-herein, called C1 and C2-exhibited activity against melanoma cell lines B16 and A375 by MTT and Trypan-Blue assays. C1 showed cell growth arrest (39% and 56%) and C2 showed potent cytotoxic activity (77% and 51%) in a dose-dependent manner. The effects of C2 on A375 cell viability were greater than MTX (98% vs 60%) at equivalent concentrations and times. Our results indicate that the integrated in silico/in vitro approach provided a benchmark to identify novel promising non-classical DHFR inhibitors showing activity against melanoma cells.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Melanoma , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Melanoma/tratamento farmacológico , Metotrexato/farmacologia
15.
Bioorg Chem ; 129: 106207, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36270170

RESUMO

A new series of pyrazolo[3,4-d]pyrimidine analogues bearing different amino acid conjugates 10a-m were synthesized with the aim to evaluate their antitumor effect through simultaneous inhibition of human dihydrofolate reductase (hDHFR). All novel compounds were tested to screen their enzyme inhibition activity against (hDHFR) beside their in vitro cytotoxicity against six human MTX resistant cancer cell lines namely, human prostate cancer (PC-3), pancreatic human cancer cell lines (BxPC-3), colorectal carcinoma (HCT-116), human hepatocellular carcinoma (HepG-2), cervical carcinoma (HeLa), and mammary gland breast cancer (MCF-7), besides normal immortalized pancreatic cell line (HPDE). Compounds 10e, 10f, 10g inhibited DHFR at considerable low (IC50 < 1 µM) in comparison to MTX (IC50 = 5.61 µM) beside their characteristic cytotoxic effects on different resistant cancer cell lines. Flow cytometry was done for the most active candidate compound 10e against MCF-7 breast cancer cell line. The results illustrated that compound 10e induced apoptosis and arrested MCF-7 cell cycle in the G1/S phase. Western blot for visualization and quantification was used to confirm the capability of compound 10e to induce the expression of proapoptotic caspases and Bax proteins in MCF-7 breast cancer cell line beside its ability to reduce the expression of antiapoptotic Bcl-2 protein. Molecular modeling studies demonstrated that compound 10e elucidated binding energy of (S= - 8.4390 Kcal/mol) that exceed that of the normal ligand MTX (S= - 8.3951Kcal/mol) in addition to several favorable binding interactions with the active site residues.


Assuntos
Antineoplásicos , Antagonistas do Ácido Fólico , Pirazóis , Pirimidinas , Tetra-Hidrofolato Desidrogenase , Feminino , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Pirimidinas/síntese química , Pirimidinas/química , Pirimidinas/farmacologia , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/metabolismo , Antagonistas do Ácido Fólico/síntese química , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia
17.
Expert Opin Ther Pat ; 32(10): 1079-1095, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36189616

RESUMO

INTRODUCTION: Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED: In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION: From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.


Assuntos
Antagonistas do Ácido Fólico , Humanos , Antagonistas do Ácido Fólico/farmacologia , Antagonistas do Ácido Fólico/química , Tetra-Hidrofolato Desidrogenase/química , Tetra-Hidrofolato Desidrogenase/metabolismo , Patentes como Assunto , Ácido Fólico , Aminoácidos , Tetra-Hidrofolatos , Quinazolinas , Niacinamida , Fosfatos
18.
Nature ; 609(7929): 1056-1062, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071163

RESUMO

Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico , Metotrexato , Proteína Carregadora de Folato Reduzido , Ânions/metabolismo , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Carbono/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Humanos , Metotrexato/química , Metotrexato/metabolismo , Simulação de Dinâmica Molecular , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura , Especificidade por Substrato
19.
Future Med Chem ; 14(15): 1115-1131, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35796603

RESUMO

Aim: To elucidate the mode of action of the hipposudoric acid derivatives and identify hit compounds for synthesis. Materials & methods: Structural fragments of known bioactive fluorenes were introduced onto the hipposudoric acid scaffold to yield novel derivatives. The binding motifs of the novel compounds were compared to the pharmacophore of DHFR co-crystallized with methotrexate (MTX). Results: Several of the novel compounds showed binding affinities that exceeded the affinity of the docked endogenous ligand (dihydrofolic acid). Conclusion: This study indicates that compounds 3r12, 3r9, 1s9 and 3r10 are promising candidates for synthesis and pharmacological evaluation.


Assuntos
Antagonistas do Ácido Fólico , Química Computacional , Antagonistas do Ácido Fólico/química , Ligantes , Metotrexato/farmacologia , Tetra-Hidrofolato Desidrogenase/metabolismo
20.
ACS Chem Biol ; 17(7): 1691-1702, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35715223

RESUMO

Pyrimethamine (Pyr), a known dihydrofolate reductase (DHFR) inhibitor, has long been used to treat toxoplasmosis caused by Toxoplasma gondii (Tg) infection. However, Pyr is effective only at high doses with associated toxicity to patients, calling for safer alternative treatments. In this study, we investigated a series of Pyr analogues, previously developed as DHFR inhibitors of Plasmodium falciparum bifunctional DHFR-thymidylate synthase (PfDHFR-TS), for their activity against T. gondii DHFR-TS (TgDHFR-TS). Of these, a set of compounds with a substitution at the C6 position of the pyrimidine ring exhibited high binding affinities (in a low nanomolar range) against TgDHFR-TS and in vitro T. gondii inhibitory activity. Three-dimensional structures of TgDHFR-TS reported here include the ternary complexes with Pyr, P39, or P40. A comparison of these structures showed the minor steric strain between the p-chlorophenyl group of Pyr and Thr83 of TgDHFR-TS. Such a conflict was relieved in the complexes with the two analogues, P39 and P40, explaining their highest binding affinities described herein. Moreover, these structures suggested that the hydrophobic environment in the active-site pocket could be used for drug design to increase the potency and selectivity of antifolate inhibitors. These findings would accelerate the development of new antifolate drugs to treat toxoplasmosis.


Assuntos
Antagonistas do Ácido Fólico , Toxoplasma , Toxoplasmose , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Tetra-Hidrofolato Desidrogenase/metabolismo , Timidilato Sintase , Toxoplasmose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...